

 [image: _images/logo_big.png]

nanoblocks

[image: _images/nanoblocks.svg]
 [https://badge.fury.io/py/nanoblocks]nanoblocks is an object-oriented API implementation of the Nano RPC that eases the communication with the Nano protocol.

With nanoblocks it is possible to integrate Nano cryptocurrency in any software with just a few lines of code, almost out-of-the-box. Check out the following documents to know how to start:

Getting started

	What is Nano?
	How does Nano work?

	How to interact with the network?

	Can I host a node?

	Getting started
	Set-up a Node

	Interacting with the network

	Accessing an account

	Accessing a block

	Accessing a wallet
	Creating new wallets

	Creating wallet accounts

	Requesting payments

	Sending and receiving Nano

What is Nano?

Nano is a decentralized cryptocurrency that was born in 2015 under the wings of the Nano Foundation,
led by Colin LeMahieu. It is claimed to be one of the fastests cryptocurrencies in the cryptomarket, as the transactions can be instant
and fee-less. Furthermore, there is no mining required, all the coins are already distributed and it can be considered one of the
greenest cryptocurrencies available.

There are a total of 133.248.290 Nano coins available, even though each can be divided up to 30 decimals.
This division makes it suitable for microtransactions.

How does Nano work?

Nano is formed by a set of servers (called nodes) running the Nano node software [http://github.com/nanocurrency/nano-node].
It is open-sourced (under the License BSD 3-Clause), meaning that every person can contribute to the code
and host a node server.

All the nodes are interconnected forming the Nano network. Every node in the network contains the full ledger of
transactions done since the very first transaction. Every time a transaction is attempted, all the nodes negotiate among
them the validity of the transaction until the majority (66%) agree in confirmation, which is also known as
Open-Representative-Voting. For this reason, Nano is considered a Peer2Peer decentralized cryptocurrency.

Unlike other cryptocurrencies where there is a single blockchain for all the operations, in Nano there are as many
blockchains as accounts in the network. Furthermore, all the blockchains are ruled by a single structure based on a Direct Acyclic Graph (DAG)

which is called block-lattice.

Nano is scalable due to every account ruling its own blockchain and no other’s. However, every block that is going
to be inserted in any blockchain must be confirmed by most of the nodes at any time. This makes the network secure and
avoids double spend problems.

How to interact with the network?

The entry point to the network is the Nano node. In order to check accounts and make transactions, the Nano node software
usually publish an API in the http (TCP 7076) and websocket (TCP 7078) protocols.
The node operators usually restrict the access to these node APIs to avoid saturation and hacking. However, there is
still a certain set of public API exposed through SSL layers, like for example the ones exposed in https://publicnodes.somenano.com/.

Every wallet software, like Natrium, Nalli or Nault, use a private (sometimes public) node to operate.
For this reason, if the wallet’s node shuts down, the wallet might lose the service.
However, since the account data is stored in every node’s ledger, its control can be retrieved by using any other
wallet software, or even your own wallet built with nanoblocks.

Can I host a node?

Definitely Yes, and you should if you want to have a serious development with this library, even though it is not mandatory.
For experimental setups, public nodes can be used instead; however, it is highly encouraged to host your own node due to security concerns.
Also, some operations can be applied offline where no nodes are required at all.

nanoblocks points to a public node by default (Mynano.ninja), which allows to be used out-of-the-box.
In case more advanced configuration is required, a tutorial on how to set up a node can be found here [https://docs.nano.org/running-a-node/overview/].

Getting started

In order to start, make sure a communication to a node RPC http and WebSocket is available. Otherwise, most of the examples presented in this page won’t work properly.

Check the following section to know how to install a node.

Set-up a Node

nanoblocks can release all its functionality by accessing a Node API. You can either get access to a public Node http REST API and WebSockets, or mount your own node instead (which is highly encouraged).
If you want to install the Nano node, you should try to set up a Node by following the official installation guide [https://docs.nano.org/running-a-node/overview/].

Take note of the rest API address (usually TCP node_host:7076) and the WebSocket address (usually TCP node_host:7078), as you are going to need them from now on.

Also, note that having a dedicated work server for generating work hashes is highly encouraged. check out the nano work server [https://github.com/nanocurrency/nano-work-server]. Each Nano transaction requires a work hash attached, and generating the hash is a heavy process which usually requires a dedicated GPU to fit in time. Even though this problem can be circumvented by caching the work hash for each account frontier, having a dedicated work server separated from the node is still encouraged.

Interacting with the network

The entry point to the network is the class NanoNetwork:

>>> from nanoblocks.node import NanoNode
>>> from nanoblocks.network import NanoNetwork

>>> node = NanoNode(rest_api_url="http://localhost:7076", websocket_api_url="ws://localhost:7078")
>>> node
[Node http://localhost:7076 (Nano V21.3)]

>>> network = NanoNetwork(node)
>>> network
[Node http://localhost:7076 (Nano V21.3)] (270 peers; 15362838 account)

The network object contains access to three basic members: the blocks in the network, the accounts globally registered and the wallets.

Accessing an account

One of the most interesting functionalities in most criptocurrencies is that the ledger is public and all the accounts
can be accessed. Accessing an account means reading its balance and its blockchain (history of transactions).

Note that accessing an account != controlling an account, as for controlling an account it requires you to have the corresponding private key (which is different from the wallet seed!).

Given the network object, accessing an account can be done as follows:

>>> account = network.accounts["nano_39a73oy5ungrhxy5z5oao1xso4zo7dmgpjd4u74xcrx3r1w6rtazuouw6qfi"]
>>> account
nano_39a73oy5ungrhxy5z5oao1xso4zo7dmgpjd4u74xcrx3r1w6rtazuouw6qfi (
 Total blocks: 733
 Total balance: 0.000002000000000000000000000002 NANO
 Confirmed balance: 0.000000000000000000000000000000 NANO
 Pending balance: 0.000002000000000000000000000002 NANO
 Last confirmed payment: 2020-12-02 01:30:39+01:00
 Is virtual: False
)

You might have noticed well: network.accounts[] behaves like a python dictionary, which in turns makes it easy to access any account in the network.
In nanoblocks, every account is wrapped inside the class Account which gives basic functionality for account handling:

>>> account.balance
0.000002000000000000000000000002 NANO

>>> account.pending_balance
0.000002000000000000000000000002 NANO

>>> account.confirmed_balance
0.000000000000000000000000000000 NANO

>>> account.public_key
9D050D7C3DD1D87F7C3F8EA8A83B9A8BF52AE6EB4562D945D563A1C0384C691F

>>> account.frontier
FED268136D2931EDEA61057D91C3C250894EF95C14C0D16CA0D126D99579C53C

>>> account.representative # The representative is another account object
nano_16u1uufyoig8777y6r8iqjtrw8sg8maqrm36zzcm95jmbd9i9aj5i8abr8u5 (
 Total blocks: 6
 Total balance: 0.000000000000000000000000000000 NANO
 Confirmed balance: 0.000000000000000000000000000000 NANO
 Pending balance: 0.000000000000000000000000000000 NANO
 Last confirmed payment: 2020-12-02 01:57:11+01:00
 Is virtual: False
)

Accessing a block

If you know a block hash and you want to check its information, it can be done in a similar way than with accounts, but with the blocks member:

>>> block = network.blocks["4FEC4BDD078C741F599221C67C8BE6493C872EF9B30968BBF4991640FFF42DA2"]
>>> block
[Block #4 from account nano_39a73oy5ungrhxy5z5oao1xso4zo7dmgpjd4u74xcrx3r1w6rtazuouw6qfi]
 Type: receive
 Hash: 4FEC4BDD078C741F599221C67C8BE6493C872EF9B30968BBF4991640FFF42DA2
 Source account: nano_39a73oy5ungrhxy5z5oao1xso4zo7dmgpjd4u74xcrx3r1w6rtazuouw6qfi
 Amount: 0.000040000000000000000000000000
 Local date: 1970-01-01 01:00:00+01:00

Every Block is wrapped inside the class derived from Block, which can in turn be a BlockSend, a BlockReceive or a BlockState.
The main difference between each block implementation is the arrangement of the fields and the way they are displayed when printed.

Check the block docs to know what methods and attributes are available for each.

Accessing a wallet

Wallets can be accessed by using the property wallets of the network object, which
gives access by the seed or the bip39-mnemonic 24-word phrase.

To access an existing wallet by using the 64-Bytes seed:
>>> wallet = network.wallets["7F632A80ECCC54A058602CD64A81D23A6B4D7320562E4767C9EB0BBB1151CDF2"]

Alternatively, it can be accessed with the BIP-39 24 words:
>>> wallet = network.wallets[['legal', 'bone', 'parent', 'sunset', 'shed', 'expand', 'ghost', 'airport', 'stone', 'favorite', 'innocent', 'inquiry', 'regular', 'ridge', 'life', 'shift', 'electric', 'dinner', 'kiss', 'blast', 'rain', 'pottery', 'daughter', 'execute']]

Wallet information can be printed out
>>> print(wallet.seed)
7F632A80ECCC54A058602CD64A81D23A6B4D7320562E4767C9EB0BBB1151CDF2

>>> print(wallet.mnemonic)
['legal', 'bone', 'parent', 'sunset', 'shed', 'expand', 'ghost', 'airport', 'stone', 'favorite', 'innocent', 'inquiry', 'regular', 'ridge', 'life', 'shift', 'electric', 'dinner', 'kiss', 'blast', 'rain', 'pottery', 'daughter', 'execute']

Creating new wallets

New wallets can be created with a single line of code:

>>> new_wallet = network.wallets.create()

You can then print the seed and/or the mnemonic BIP39 24-word list from it.

The creation of the wallet relies on the random seed number generator from the operating system,
which is considered to be cryptographically secure.

Note that this method does not require to have a node attached. This means that it can run completely offline (even without internet):

>>> from nanoblocks.network import NanoNetwork
>>> network = NanoNetwork() # No node attached
>>> wallet = network.wallets.create()

This happens because nanoblocks integrates all the cryptographic functions required to create wallets and accounts.

Creating wallet accounts

Wallets are the basic building block in Nano, as they allow you to create accounts. Every wallet can create 2^32 accounts, which is an extremely big number (4294967296).
Every account in a wallet is deterministically indexed by an integer in the range [0, 2^32]. They can be easily created as follows:

>>> account_0 = wallet.accounts[0]
>>> account_1 = wallet.accounts[1]

The account at every index is always the same account, no matter which software wallet you use. This means that the wallet at a given index is the same in nanoblocks, in Natrium, Nault or any other wallet software.
Note that this process can still be done offline, as it is not required nodes to create accounts.

When an account is new and doesn’t have blockchain, it is considered virtual. A virtual account becomes real in the
ledger of the nodes as soon as it publish a BlockReceive, which requires someone sending to it a BlockSend with some amount first.

All the accounts accessed through a wallet are automatically unlocked with the corresponding private key. This allows you to create and sign blocks in its blockchain. You can check the private key of an account as follows:

>>> account_0_privkey = account_0.private_key

Furthermore, if you have the private key, you can unlock it at any time directly without the need of the wallet:

>>> account_0 = network.accounts['account_0_address']
>>> account_0.unlock(account_0_privkey)

Requesting payments

With nanoblocks, requesting a payment for an account can be simplified in two lines of code.
Any Account in the network can be used to request a payment through its method request_payment().
When invoked, a Nano amount is passed as parameter and a Payment object is returned, which gives an easy interface to the payment process.

>>> account = network.accounts['nano_1nween66fcspgkx33defgtmypgzkqf4heihaubqwjyhjrwma5qz4z9r45szj']
>>> payment = account.request_payment("0.1") # In Nano units

The Payment object can be used to generate a payment link

>>> print(payment.uri)
nano:nano_1nween66fcspgkx33defgtmypgzkqf4heihaubqwjyhjrwma5qz4z9r45szj?amount=100000000000000000000000000000

It can also generate QR codes as PIL images, which can be scanned by any modern wallet software like Natrium or Nault:

>>> qr_image = payment.qr_code
>>> qr_code.show()

[image: ../_images/qr_code_donate.jpg]
(ps: if you like the project, donations are accepted by using this very same QR code image!)

And the most interesting method of the payment object is the wait() method, which allows to lock the thread until
a payment is detected (or until the timeout raises):

>>> block = payment.wait(timeout=30)
>>> block

The wait() method accepts a timeout parameter in seconds. When the payment is processed, the corresponding SendBlock
is immediately returned back to you. This block is useful as you can track the confirmation of the block and build the
corresponding ReceiveBlock to convert the pending transaction in confirmed transaction, in case you have control
over the account.

Note that no private keys are involved in the process yet, meaning that any account can be used for this operation.

Sending and receiving Nano

Sending and receiving Nano are tightly coupled with block handling and work generation. Since it is a little more
complex (not so much!) than the concepts and uses explained here, it has its own document. Everything is explained in
the following section, so take a breath first before diving!

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nanoblocks	

 	
 	
 nanoblocks.account	

 	
 	
 nanoblocks.account.account	

 	
 	
 nanoblocks.account.payment	

 	
 	
 nanoblocks.account.payment.payment	

 	
 	
 nanoblocks.block	

 	
 	
 nanoblocks.block.block	

 	
 	
 nanoblocks.block.block_factory	

 	
 	
 nanoblocks.block.block_receive	

 	
 	
 nanoblocks.block.block_send	

 	
 	
 nanoblocks.block.block_state	

 	
 	
 nanoblocks.currency	

 	
 	
 nanoblocks.currency.amount	

 	
 	
 nanoblocks.exceptions	

 	
 	
 nanoblocks.exceptions.block_not_broadcastable_error	

 	
 	
 nanoblocks.exceptions.insufficient_funds	

 	
 	
 nanoblocks.exceptions.no_pending_block_available_error	

 	
 	
 nanoblocks.exceptions.node_backend_required_error	

 	
 	
 nanoblocks.exceptions.payment_timeout_error	

 	
 	
 nanoblocks.exceptions.work_error	

 	
 	
 nanoblocks.network	

 	
 	
 nanoblocks.network.nano_network	

 	
 	
 nanoblocks.node	

 	
 	
 nanoblocks.protocol	

 	
 	
 nanoblocks.protocol.crypto	

 	
 	
 nanoblocks.protocol.crypto.ed25519	

 	
 	
 nanoblocks.wallet	

 	
 	
 nanoblocks.wallet.wallet	

 	
 	
 nanoblocks.work	

 	
 	
 nanoblocks.work.backend	

 	
 	
 nanoblocks.work.work_server	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	Account (class in nanoblocks.account.account)

 	account (nanoblocks.block.block_state.BlockState property)

 	account_history() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	account_info() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	account_owner (nanoblocks.block.block.Block property)

 	accounts (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	(nanoblocks.wallet.wallet.Wallet property)

 	accounts_balances() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	accounts_frontiers() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	accounts_pending() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	active_difficulty() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	
 	active_dificulty() (nanoblocks.network.nano_network.NanoNetwork method)

 	(nanoblocks.network.NanoNetwork method)

 	add_failover_node() (nanoblocks.node.NodeFailover method)

 	address (nanoblocks.account.account.Account property)

 	Amount (class in nanoblocks.currency)

 	(class in nanoblocks.currency.amount)

 	amount (nanoblocks.block.block_receive.BlockReceive property)

 	(nanoblocks.block.block_send.BlockSend property)

 	AMOUNT_STRING_REGEX (nanoblocks.currency.Amount attribute)

 	(nanoblocks.currency.amount.Amount attribute)

 	as_unit() (nanoblocks.currency.Amount method)

 	(nanoblocks.currency.amount.Amount method)

 	available_supply (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	available_supply() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

B

 	
 	balance (nanoblocks.account.account.Account property)

 	(nanoblocks.block.block_state.BlockState property)

 	bit() (in module nanoblocks.protocol.crypto.ed25519)

 	Block (class in nanoblocks.block.block)

 	block_confirm() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	block_count (nanoblocks.account.account.Account property)

 	block_count() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	block_info() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	BLOCK_PROTO_MAP (nanoblocks.block.block_factory.BlockFactory attribute)

 	BlockFactory (class in nanoblocks.block.block_factory)

 	
 	BlockNotBroadcastableError

 	BlockReceive (class in nanoblocks.block.block_receive)

 	blocks (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	blocks_info() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	BlockSend (class in nanoblocks.block.block_send)

 	BlockState (class in nanoblocks.block.block_state)

 	broadcastable (nanoblocks.block.block.Block property)

 	build() (nanoblocks.block.block_factory.BlockFactory method)

 	build_change_representative_block() (nanoblocks.account.account.Account method)

 	build_receive_block() (nanoblocks.account.account.Account method)

 	build_send_block() (nanoblocks.account.account.Account method)

C

 	
 	change_representative() (nanoblocks.account.account.Account method)

 	checkvalid() (in module nanoblocks.protocol.crypto.ed25519)

 	clone() (nanoblocks.currency.Amount method)

 	(nanoblocks.currency.amount.Amount method)

 	
 	confirmed (nanoblocks.block.block.Block property)

 	confirmed_balance (nanoblocks.account.account.Account property)

 	create() (nanoblocks.wallet.Wallets method)

D

 	
 	decodeint() (in module nanoblocks.protocol.crypto.ed25519)

 	
 	decodepoint() (in module nanoblocks.protocol.crypto.ed25519)

 	destination_account (nanoblocks.block.block_send.BlockSend property)

E

 	
 	edwards_add() (in module nanoblocks.protocol.crypto.ed25519)

 	edwards_double() (in module nanoblocks.protocol.crypto.ed25519)

 	
 	encodeint() (in module nanoblocks.protocol.crypto.ed25519)

 	encodepoint() (in module nanoblocks.protocol.crypto.ed25519)

F

 	
 	failover_nodes (nanoblocks.node.NodeFailover property)

 	fill_account_info() (nanoblocks.account.account.Account method)

 	find_healthy() (nanoblocks.node.NodeFailover method)

 	format() (nanoblocks.currency.Amount method)

 	(nanoblocks.currency.amount.Amount method)

 	from_dict() (nanoblocks.block.block.Block class method)

 	
 	from_mnemonic() (nanoblocks.wallet.wallet.Wallet class method)

 	from_priv_key() (nanoblocks.account.account.Account class method)

 	from_pub_key() (nanoblocks.account.account.Account class method)

 	from_value() (nanoblocks.currency.Amount class method)

 	(nanoblocks.currency.amount.Amount class method)

 	frontier (nanoblocks.account.account.Account property)

G

 	
 	generate_work_change() (nanoblocks.work.NanoLocalWorkServer method)

 	(nanoblocks.work.NanoRemoteWorkServer method)

 	(nanoblocks.work.work_server.WorkServer method)

 	generate_work_receive() (nanoblocks.work.NanoLocalWorkServer method)

 	(nanoblocks.work.NanoRemoteWorkServer method)

 	(nanoblocks.work.work_server.WorkServer method)

 	
 	generate_work_send() (nanoblocks.work.NanoLocalWorkServer method)

 	(nanoblocks.work.NanoRemoteWorkServer method)

 	(nanoblocks.work.work_server.WorkServer method)

H

 	
 	H() (in module nanoblocks.protocol.crypto.ed25519)

 	hash (nanoblocks.block.block.Block property)

 	healthy() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	height (nanoblocks.block.block.Block property)

 	
 	Hint() (in module nanoblocks.protocol.crypto.ed25519)

 	history (nanoblocks.account.account.Account property)

 	http_url (nanoblocks.node.NodeFailover property)

 	(nanoblocks.node.NodeRemote property)

 	(nanoblocks.node.NodeVirtual property)

I

 	
 	InsufficientFunds

 	inv() (in module nanoblocks.protocol.crypto.ed25519)

 	
 	is_first (nanoblocks.block.block.Block property)

 	is_virtual (nanoblocks.account.account.Account property)

 	isoncurve() (in module nanoblocks.protocol.crypto.ed25519)

L

 	
 	last_update (nanoblocks.account.account.Account property)

 	last_update_elapsed_seconds (nanoblocks.account.account.Account property)

 	
 	link (nanoblocks.block.block_state.BlockState property)

 	load_snapshot() (nanoblocks.node.NodeVirtual method)

 	local_timestamp (nanoblocks.block.block.Block property)

M

 	
 	make_Bpow() (in module nanoblocks.protocol.crypto.ed25519)

 	mnemonic (nanoblocks.wallet.wallet.Wallet property)

 	modified_date (nanoblocks.account.account.Account property)

 	
 module

 	nanoblocks.account

 	nanoblocks.account.account

 	nanoblocks.account.payment

 	nanoblocks.account.payment.payment

 	nanoblocks.block

 	nanoblocks.block.block

 	nanoblocks.block.block_factory

 	nanoblocks.block.block_receive

 	nanoblocks.block.block_send

 	nanoblocks.block.block_state

 	nanoblocks.currency

 	nanoblocks.currency.amount

 	nanoblocks.exceptions

 	nanoblocks.exceptions.block_not_broadcastable_error

 	nanoblocks.exceptions.insufficient_funds

 	nanoblocks.exceptions.no_pending_block_available_error

 	nanoblocks.exceptions.node_backend_required_error

 	nanoblocks.exceptions.payment_timeout_error

 	nanoblocks.exceptions.work_error

 	nanoblocks.network

 	nanoblocks.network.nano_network

 	nanoblocks.node

 	nanoblocks.protocol

 	nanoblocks.protocol.crypto

 	nanoblocks.protocol.crypto.ed25519

 	nanoblocks.wallet

 	nanoblocks.wallet.wallet

 	nanoblocks.work

 	nanoblocks.work.backend

 	nanoblocks.work.work_server

N

 	
 	
 nanoblocks.account

 	module

 	
 nanoblocks.account.account

 	module

 	
 nanoblocks.account.payment

 	module

 	
 nanoblocks.account.payment.payment

 	module

 	
 nanoblocks.block

 	module

 	
 nanoblocks.block.block

 	module

 	
 nanoblocks.block.block_factory

 	module

 	
 nanoblocks.block.block_receive

 	module

 	
 nanoblocks.block.block_send

 	module

 	
 nanoblocks.block.block_state

 	module

 	
 nanoblocks.currency

 	module

 	
 nanoblocks.currency.amount

 	module

 	
 nanoblocks.exceptions

 	module

 	
 nanoblocks.exceptions.block_not_broadcastable_error

 	module

 	
 nanoblocks.exceptions.insufficient_funds

 	module

 	
 nanoblocks.exceptions.no_pending_block_available_error

 	module

 	
 nanoblocks.exceptions.node_backend_required_error

 	module

 	
 nanoblocks.exceptions.payment_timeout_error

 	module

 	
 	
 nanoblocks.exceptions.work_error

 	module

 	
 nanoblocks.network

 	module

 	
 nanoblocks.network.nano_network

 	module

 	
 nanoblocks.node

 	module

 	
 nanoblocks.protocol

 	module

 	
 nanoblocks.protocol.crypto

 	module

 	
 nanoblocks.protocol.crypto.ed25519

 	module

 	
 nanoblocks.wallet

 	module

 	
 nanoblocks.wallet.wallet

 	module

 	
 nanoblocks.work

 	module

 	
 nanoblocks.work.backend

 	module

 	
 nanoblocks.work.work_server

 	module

 	NanoLocalWorkServer (class in nanoblocks.work)

 	NanoNetwork (class in nanoblocks.network)

 	(class in nanoblocks.network.nano_network)

 	NanoRemoteWorkServer (class in nanoblocks.work)

 	node_backend (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	NodeBackendRequiredError

 	NodeFailover (class in nanoblocks.node)

 	NodeRemote (class in nanoblocks.node)

 	NodeVirtual (class in nanoblocks.node)

 	NoPendingBlockAvailableError

O

 	
 	offline_update() (nanoblocks.account.account.Account method)

 	
 	offline_update_by_block() (nanoblocks.account.account.Account method)

 	offline_update_representative() (nanoblocks.account.account.Account method)

P

 	
 	Payment (class in nanoblocks.account.payment.payment)

 	PaymentTimeoutError

 	peers (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	peers() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	pending_balance (nanoblocks.account.account.Account property)

 	
 	pending_transactions (nanoblocks.account.account.Account property)

 	pow2() (in module nanoblocks.protocol.crypto.ed25519)

 	previous (nanoblocks.block.block_state.BlockState property)

 	private_key (nanoblocks.account.account.Account property)

 	process() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	public_key (nanoblocks.account.account.Account property)

 	publickey_unsafe() (in module nanoblocks.protocol.crypto.ed25519)

Q

 	
 	qr_code (nanoblocks.account.account.Account property)

 	(nanoblocks.account.payment.payment.Payment property)

R

 	
 	receive_nano() (nanoblocks.account.account.Account method)

 	refcount() (nanoblocks.account.account.Account method)

 	remove_failover_node() (nanoblocks.node.NodeFailover method)

 	representative (nanoblocks.account.account.Account property)

 	(nanoblocks.block.block_state.BlockState property)

 	representatives (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	representatives() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	
 	representatives_count (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	representatives_online (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	representatives_online() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	representatives_online_count (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	request_confirmation() (nanoblocks.block.block.Block method)

 	request_payment() (nanoblocks.account.account.Account method)

S

 	
 	scalarmult() (in module nanoblocks.protocol.crypto.ed25519)

 	scalarmult_B() (in module nanoblocks.protocol.crypto.ed25519)

 	seed (nanoblocks.wallet.wallet.Wallet property)

 	send_nano() (nanoblocks.account.account.Account method)

 	signature (nanoblocks.block.block_state.BlockState property)

 	
 	signature_unsafe() (in module nanoblocks.protocol.crypto.ed25519)

 	SignatureMismatch

 	snapshot() (nanoblocks.node.NodeRemote method)

 	source_account (nanoblocks.block.block_receive.BlockReceive property)

 	subtype (nanoblocks.block.block.Block property)

 	(nanoblocks.block.block_state.BlockState property)

T

 	
 	telemetry (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	telemetry() (nanoblocks.node.NodeRemote method)

 	(nanoblocks.node.NodeVirtual method)

 	to_dict() (nanoblocks.account.account.Account method)

 	(nanoblocks.block.block.Block method)

 	
 	to_hex() (nanoblocks.currency.Amount method)

 	(nanoblocks.currency.amount.Amount method)

 	track_confirmation_blocks() (nanoblocks.network.nano_network.NanoNetwork method)

 	(nanoblocks.network.NanoNetwork method)

 	type (nanoblocks.block.block.Block property)

U

 	
 	unit (nanoblocks.currency.Amount property)

 	(nanoblocks.currency.amount.Amount property)

 	unlock() (nanoblocks.account.account.Account method)

 	
 	unlocked (nanoblocks.account.account.Account property)

 	update() (nanoblocks.account.account.Account method)

 	uri (nanoblocks.account.payment.payment.Payment property)

V

 	
 	version (nanoblocks.node.NodeRemote property)

 	(nanoblocks.node.NodeVirtual property)

W

 	
 	wait() (nanoblocks.account.payment.payment.Payment method)

 	wait_for_confirmation() (nanoblocks.block.block.Block method)

 	Wallet (class in nanoblocks.wallet.wallet)

 	Wallets (class in nanoblocks.wallet)

 	wallets (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	weight (nanoblocks.account.account.Account property)

 	work (nanoblocks.block.block_state.BlockState property)

 	work_server (nanoblocks.network.nano_network.NanoNetwork property)

 	(nanoblocks.network.NanoNetwork property)

 	
 	WorkError

 	WorkServer (class in nanoblocks.work.work_server)

 	ws (nanoblocks.node.NodeFailover property)

 	(nanoblocks.node.NodeRemote property)

 	(nanoblocks.node.NodeVirtual property)

 	ws_url (nanoblocks.node.NodeFailover property)

 	(nanoblocks.node.NodeRemote property)

 	(nanoblocks.node.NodeVirtual property)

X

 	
 	xrecover() (in module nanoblocks.protocol.crypto.ed25519)

nanoblocks

nanoblocks.account.payment package

Submodules

nanoblocks.account.payment.payment module

	
class nanoblocks.account.payment.payment.Payment(account_owner, amount, nano_network)

	Bases: nanoblocks.base.nanoblocks_class.NanoblocksClass

Gives an easy interface to handle payments for a given account.

	
property qr_code

	Retrieves a PIL image with the QR code for the payment that can be scanned by modern wallets.

	
property uri

	Generates the payment URI

	
wait(timeout_seconds=None)

	Waits for the payment to be done.

The expected payment must match the exact amount.

	Parameters

	timeout_seconds – Time in seconds to wait for the payment. Set it to None to wait indefinitely.

	Returns

	Returns the block that needs to be confirmed.

Module contents

nanoblocks.account subpackage

The account subpackage contains classes to manage the accounts in the Nano network.

This subpackage is indirectly handled by the nanoblocks.network.NanoNetwork class and should not be
instantiated manually.

Account

	
class nanoblocks.account.account.Account(nano_address, nano_network, initial_update=True)

	Bases: nanoblocks.base.nanoblocks_class.NanoblocksClass

Handles a single account in the Nano network.

Contains all the methods that allows to interact with accounts, like reading the state, sending/receiving amounts or
reading the blockchain of the account.

By default every account is read-only, unless a private key is available.

	Parameters

	
	nano_address – Nano address of the account. E.g “nano_3pyz..”.

	nano_network – The nano network owning this account.

	initial_update – Flag to determine if the account should be updated at start or not. Updating an account requires querying the
backend node.

	
property address

	Provides the account nanoblocks address of this account. E.g. “nano_3pyz…”

	
property balance

	Provides the total balance for this account.

Note: a call to update() or offline_update() before balance is highly encouraged!!

	
property block_count

	Provides the number of block counts for this account.

Note: a call to update() or offline_update() before block_count is highly encouraged!!

	
build_change_representative_block(new_representative, work_hash=None)

	Build the state block for changing the representative for this account and returns it.

	Parameters

	
	new_representative – Account or string for the new representative

	work_hash – Work hash for changing the representative. If no work_hash is provided, the change will be local and not
propagated through the nodes.

	
build_receive_block(pending_block, work_hash=None, new_representative=None)

	Builds and signs the receive transaction block for the specified pending block and returns it.

Note that this method does not broadcast the block, but returns it wrapped in a nanoblocks.block.BlockReceive class.

The returned block object can be broadcasted using the method broadcast()
from the property blocks of the class nanoblocks.network.NanoNetwork.

A pending block can be obtained by iterating over the pending_transactions property
of the class nanoblocks.account.Account.

	Parameters

	
	pending_block – Pending block to receive from.

	work_hash – work hash for the receive transaction.

	new_representative – Representative account object to set in this transaction (can be changed on any transaction). None to set
the same representative.

	
build_send_block(account_target, nano_amount, work_hash=None, new_representative=None)

	Builds and signs the send transaction block and returns it.

Note that this method does not broadcast the block, but returns it wrapped in a nanoblocks.block.BlockSend class.

The returned block object can be broadcasted using the method broadcast()
from the property blocks of the class nanoblocks.network.NanoNetwork.

	Parameters

	
	account_target – Account target for the send. It can be either an Account object or a string with the public address.

	nano_amount – Amount of nanoblocks to send. It can be an Amount() object or an amount in “Nano” units.

	work_hash – Hash result of work for this transaction. A WorkServer can be used to build the hash for an account.
If None, it will try to use a local work server.

	new_representative – Representative account to set in this transaction (can be changed on any transaction). None to set the
same representative.

	Returns

	Returns the send block, signed, ready to broadcast to the network.

	
change_representative(new_account_representative, wait_confirmation=True, confirmation_timeout_secs=30)

	
Easy interface for changing the representative. Builds, signs and broadcasts the change block to the network.

	Example:
	account.change_representative(”nano_..”) # Changes the representative to “nano_…”

	Parameters

	
	new_account_representative – Nano account (string “nano_…” or Account object) destination.

	wait_confirmation – Boolean flag to wait for the network to confirm the block.

	confirmation_timeout_secs – Number of seconds to wait for confirmation of the block.

	Returns

	Returns the published block.

	
property confirmed_balance

	Provides the confirmed balance for this account.

Note: a call to update() or offline_update() before confirmed_balance is highly encouraged!!

	
fill_account_info(account_info)

	Fills the internal account info cached data.
This is useful if signing is required and no node is available to query (e.g. under offline computers).

When an account info is filled within the account object, you are then able to send or receive blocks

account_info_example = {
 "frontier": "FF84533A571D953A596EA401FD41743AC85D04F406E76FDE4408EAED50B473C5",
 "open_block": "991CF190094C00F0B68E2E5F75F6BEE95A2E0BD93CEAA4A6734DB9F19B728948",
 "representative_block": "991CF190094C00F0B68E2E5F75F6BEE95A2E0BD93CEAA4A6734DB9F19B728948",
 "balance": "235580100176034320859259343606608761791",
 "modified_timestamp": "1501793775",
 "block_count": "33",
 "confirmation_height" : "28",
 "confirmation_height_frontier" : "34C70FCA0952E29ADC7BEE6F20381466AE42BD1CFBA4B7DFFE8BD69DF95449EB",
 "account_version": "1"
}

	
classmethod from_priv_key(private_key, nano_network)

	Tries to access an account from the specified private key.

No addresses or public keys are required, as they can be derived from the private key itself.

	Parameters

	
	private_key – private key to derive the account from.

	nano_network – The nano network owning this account.

	
classmethod from_pub_key(pub_key, nano_network)

	Gives access to the specified account by its public key.

This method is read-only unless the account is unlocked() with the private key.

	Parameters

	
	pub_key – Public key for the nanoblocks account.

	nano_network – The nano network owning this account.

	
property frontier

	Provides the frontier block hash for this account.
In case of a new account, this frontier is 0.

	
property history

	

	
property is_virtual

	Retrieves whether this account exists or not in the network.

A new account does not exist until a “receive” block is emitted in its blockchain.

	
property last_update

	
	Returns

	

Datetime of the last update of this account.

	
property last_update_elapsed_seconds

	

	
property modified_date

	Provides the last modified date for this account.

Note: a call to update() or offline_update() before modified_date is highly encouraged!!

	
offline_update(account_info)

	Performs an offline update with the given account_info.
This method does not interact with a node and can be executed offline to update the information of an account
object (for example, taking this info from a local json file).

	Parameters

	account_info – Dictionary containing information of the account (frontier, block_count, representative, weight, status,
balance, pending, modified_timestamp, …).

	
offline_update_by_block(block_state)

	Updates the account with the provided block state.

The block state must be crafted for the current account.

	Parameters

	block_state – BlockState object signed, with work.

	
offline_update_representative(new_representative)

	Sets the representative for this account locally, useful under offline environments or for local updates.

	Parameters

	new_representative – Account or string for the new representative

	
property pending_balance

	Provides the pending balance for this account.

Note: a call to update() or offline_update() before pending_balance is highly encouraged!!

	
property pending_transactions

	Retrieves the pending transactions for the account.

	
property private_key

	Provides the private key of this account, if unlocked.

	
property public_key

	Provides the public key of this account.

	
property qr_code

	Generates a QR code representation of this account in PIL format.

If a payment is desired, use the .request_payment(…).qr_code method instead.

	Returns

	QR code representation of the account

	
receive_nano(block_to_receive=None, wait_confirmation=True, confirmation_timeout_secs=30)

	Easy interface for receiving a transaction. Builds, signs and broadcasts the receive block to the network.

	Example:
	account.receive_nano() # Receives the next pending transaction (if any)

	Parameters

	
	block_to_receive – Pending transaction to receive (can be obtained from account.pending_transactions list). In case of None,
the method automatically peeks for the next pending transaction.

	wait_confirmation – Boolean flag to wait for the network to confirm the block.

	confirmation_timeout_secs – Number of seconds to wait for confirmation of the block.

	Returns

	Returns the published block. None if no pending transactions.

	
refcount()

	Retrieves how many references to this account are active.
:return: the number of active references to this account.

	
property representative

	Provides the representative for this account.

Note: a call to update() or offline_update() before representative is highly encouraged!!

	
request_payment(nano_units_amount=None)

	Generates the payment object which contains payment handle for the given amount

	Parameters

	nano_units_amount – Amount of NANO to hook payment for.
If a different unit measure is required, wrap it into an Amount() class.
If no amount is required, set it to None.

	
send_nano(account_target, nano_amount, wait_confirmation=True, confirmation_timeout_secs=30)

	Easy interface for sending a transaction. Builds, signs and broadcasts the send block to the network.

	Example:
	account.send_nano(”nano_..”, “0.01”) # Sends 0.01 Nano to the account ‘nano_’

	Parameters

	
	account_target – Nano account (string “nano_…” or Account object) destination.

	nano_amount – Amount of Nano to send (string or Amount object).

	wait_confirmation – Boolean flag to wait for the network to confirm the block.

	confirmation_timeout_secs – Number of seconds to wait for confirmation of the block.

	Returns

	Returns the published block.

	
to_dict()

	Retrieves the cached account information.
Note: a call to update() before info() is highly encouraged!!

	
unlock(private_key)

	Tries to unlock this account with the given private key.

If the specified private key does not derive the public key of the account, an exception is raised.

Note that a private key that does not belong to the account’s public key can’t be used to sign the blocks, as
the network is going to reject them.

	Parameters

	private_key – String hexadecimal representing the private key of the account.

	
property unlocked

	Retrieves whether this account is unlocked with the private key or not.

	
update()

	Retrieves the account information from the node (if available) and caches it inside the object.

	
property weight

	Provides the weight for this account.

Note: a call to update() or offline_update() before weight is highly encouraged!!

nanoblocks.block subpackage

The block subpackage contains classes to manage the blocks in the Nano network.

This subpackage is indirectly handled by the nanoblocks.network.NanoNetwork class.

Block

	
class nanoblocks.block.block.Block(account, block_definition, nano_network)

	Bases: nanoblocks.base.nanoblocks_class.NanoblocksClass

Represents a block in the Nano network.

Gives an easy interface to access the metadata of the block.

	
property account_owner

	

	
property broadcastable

	Retrieves whether this block can be broadcasted to the network or not.
This will be true in the case it is recently built, signed and has a work hash attached.

	
property confirmed

	Checks whether this block has been confirmed or not.
This is a sync method that actively ask the node backend.

	
classmethod from_dict(dict_data, nano_network, initial_update=True)

	Builds the block from a definition dictionary

	
property hash

	Retrieves the hash of this block

	
property height

	Retrieves the height of this block in the account history

	
property is_first

	Retrieves whether this block is the first (all 0s) or not

	
property local_timestamp

	Retrieves the local timestamp of this block.

	
request_confirmation(wait_time=30)

	Forces a request for confirmation of this block to the node.

	Parameters

	wait_time – Number of seconds to wait for confirmation.

	
property subtype

	

	
to_dict()

	Retrieves the dictionary version of this block.

	
property type

	

	
wait_for_confirmation(timeout_seconds=30)

	Waits until the block has been confirmed.
This method forces a confirmation on the block and waits until it has been solved.

	
class nanoblocks.block.block_factory.BlockFactory(nano_network)

	Bases: nanoblocks.base.nanoblocks_class.NanoblocksClass

	
BLOCK_PROTO_MAP = {'change': <class 'nanoblocks.block.block_change.BlockChange'>, 'initial': <class 'nanoblocks.block.block.Block'>, 'receive': <class 'nanoblocks.block.block_receive.BlockReceive'>, 'send': <class 'nanoblocks.block.block_send.BlockSend'>, 'state': <class 'nanoblocks.block.block_state.BlockState'>, 'unknown': <class 'nanoblocks.block.block.Block'>}

	

	
build(account, block_definition, type_key='type')

	

Block SEND

	
class nanoblocks.block.block_send.BlockSend(account, block_definition, nano_network)

	Bases: nanoblocks.block.block.Block

Represents a send block.

Gives an easy interface for send blocks.

	
property amount

	Retrieves the amount of Nano received in case the block is read from the ledger.

	
property destination_account

	Retrieves the account target for the amount.
It is the account where this amount is sent to.

Block RECEIVE

	
class nanoblocks.block.block_receive.BlockReceive(account, block_definition, nano_network)

	Bases: nanoblocks.block.block.Block

Represents a receive block.

Gives an easy interface for receive blocks.

	
property amount

	Retrieves the amount of Nano received.

	
property source_account

	Retrieves the account source of the amount.
It is the account that sent the amount of this block.

Block STATE

	
class nanoblocks.block.block_state.BlockState(account, block_definition, nano_network)

	Bases: nanoblocks.block.block.Block

Represents a state block.

Gives an easy interface for state blocks.

	
property account

	

	
property balance

	Retrieves the total balance of the account after block confirmation.

	
property link

	

	
property previous

	

	
property representative

	

	
property signature

	

	
property subtype

	

	
property work

	

nanoblocks.currency package

Submodules

nanoblocks.currency.amount module

	
class nanoblocks.currency.amount.Amount(raw_input, unit=None)

	Bases: object

	
AMOUNT_STRING_REGEX = '([0-9.]+)([A-z]+)'

	

	
as_unit(new_unit='NANO')

	

	
clone()

	

	
format(show_unit=True, squeeze_zeros=True)

	

	
classmethod from_value(value, unit)

	

	
to_hex(expected_bytes=None)

	

	
property unit

	

Module contents

The currency subpackage gives access to currency classes.

	
class nanoblocks.currency.Amount(raw_input, unit=None)

	Bases: object

	
AMOUNT_STRING_REGEX = '([0-9.]+)([A-z]+)'

	

	
as_unit(new_unit='NANO')

	

	
clone()

	

	
format(show_unit=True, squeeze_zeros=True)

	

	
classmethod from_value(value, unit)

	

	
to_hex(expected_bytes=None)

	

	
property unit

	

nanoblocks.exceptions package

Submodules

nanoblocks.exceptions.block_not_broadcastable_error module

	
exception nanoblocks.exceptions.block_not_broadcastable_error.BlockNotBroadcastableError

	Bases: Exception

nanoblocks.exceptions.insufficient_funds module

	
exception nanoblocks.exceptions.insufficient_funds.InsufficientFunds

	Bases: Exception

nanoblocks.exceptions.no_pending_block_available_error module

	
exception nanoblocks.exceptions.no_pending_block_available_error.NoPendingBlockAvailableError

	Bases: Exception

nanoblocks.exceptions.node_backend_required_error module

	
exception nanoblocks.exceptions.node_backend_required_error.NodeBackendRequiredError

	Bases: Exception

nanoblocks.exceptions.payment_timeout_error module

	
exception nanoblocks.exceptions.payment_timeout_error.PaymentTimeoutError

	Bases: Exception

nanoblocks.exceptions.work_error module

	
exception nanoblocks.exceptions.work_error.WorkError

	Bases: Exception

Module contents

nanoblocks.network package

Submodules

nanoblocks.network.nano_network module

	
class nanoblocks.network.nano_network.NanoNetwork(node_backend=[FAILOVER NODE] 	[] [Node http=https://mynano.ninja/api/node; ws=wss://ws.mynano.ninja/ (Nano V22.1)] 	[x] [Node http=https://node.somenano.com/proxy; ws=wss://node.somenano.com/websocket (Nano V22.1)] 	[] [Node http=https://rainstorm.city/api; ws=wss://rainstorm.city/websocket (Nano V22.1)] 	[] [Node http=https://proxy.nanos.cc/proxy; ws=wss://socket.nanos.cc/ (Nano V22.1)] 	[] [Node http=https://proxy.powernode.cc/proxy; ws=wss://ws.powernode.cc/ (Nano V22.1)] 	[] [Node http=Virtual; ws=Virtual (Nano 22.1)], work_server=Local Work server, cache_accounts=True)

	Bases: object

This class represents the Nano network and provides methods to easily interact with it.

	
property accounts

	Handles the account API for the Nano protocol.
By default all the accounts that can be accessed are read-only.

An existing account can be accessed as follows:
wallet = nano_network.accounts[nano_address]

If a private key is available, it can be unlocked with the method unlock(priv_key).

	
active_dificulty(include_trend=False)

	Returns the difficulty values (16 hexadecimal digits string, 64 bit) for the minimum required on the network
(network_minimum) as well as the current active difficulty seen on the network (network_current,
10 second trended average of adjusted difficulty seen on prioritized transactions, refreshed every 500ms)
which can be used to perform rework for better prioritization of transaction processing.

A multiplier of the network_current from the base difficulty of network_minimum is also provided for comparison.
Network_receive_minimum and network_receive_current are also provided as lower thresholds exclusively for
receive blocks.

	Parameters

	include_trend – Boolean, false by default. Returns the trend of difficulty seen on the network as a list of multipliers.
Sampling occurs every 500ms. The list is ordered such that the first value is the most recent sample.

	
property available_supply

	Returns the amount of NANO that are available in the public supply.

	
property blocks

	Handles the blocks API for the Nano Protocol.
Allows to peek blocks and broadcast new blocks to the network.

A new block can be broadcasted as follows:
block = nano_network.blocks.broadcast(state_block)

	
property node_backend

	Returns the Node object that contains information of the node.

	
property peers

	Returns a list of pairs of online peer IPv6:port and its node protocol network version

	
property representatives

	Returns a list of representatives accounts of the network.

	
property representatives_count

	Retrieves the number of representatives in the network.

	
property representatives_online

	Returns a list of online representatives accounts of the network.
The ones that recently voted.

	
property representatives_online_count

	Retrieves the number of online representatives in the network.

	
property telemetry

	Return metrics from other nodes on the network. By default, returns a summarized view of the whole network.

	
track_confirmation_blocks(accounts_list, callback, *callback_args, **callback_kwargs)

	Tracks all the confirmation blocks in the network and reports them through the callback.
This is a blocking method.

	Parameters

	
	accounts_list – List of accounts to track.

	callback – Callback to report every block. Must return True to keep tracking for new blocks, or False to abort the
process.

	
property wallets

	Handles the wallets API for the Nano protocol.
Allows to create new accounts or manage existing ones.

A new account can be created as follows:
wallet = nano_network.wallets.create()

An existing wallet can be accessed as follows:
wallet = nano_network.wallets[seed]

	
property work_server

	

Module contents

The nanoblocks.node package contains the classes related to the management of nodes.

	
class nanoblocks.network.NanoNetwork(node_backend=[FAILOVER NODE] 	[] [Node http=https://mynano.ninja/api/node; ws=wss://ws.mynano.ninja/ (Nano V22.1)] 	[x] [Node http=https://node.somenano.com/proxy; ws=wss://node.somenano.com/websocket (Nano V22.1)] 	[] [Node http=https://rainstorm.city/api; ws=wss://rainstorm.city/websocket (Nano V22.1)] 	[] [Node http=https://proxy.nanos.cc/proxy; ws=wss://socket.nanos.cc/ (Nano V22.1)] 	[] [Node http=https://proxy.powernode.cc/proxy; ws=wss://ws.powernode.cc/ (Nano V22.1)] 	[] [Node http=Virtual; ws=Virtual (Nano 22.1)], work_server=Local Work server, cache_accounts=True)

	Bases: object

This class represents the Nano network and provides methods to easily interact with it.

	
property accounts

	Handles the account API for the Nano protocol.
By default all the accounts that can be accessed are read-only.

An existing account can be accessed as follows:
wallet = nano_network.accounts[nano_address]

If a private key is available, it can be unlocked with the method unlock(priv_key).

	
active_dificulty(include_trend=False)

	Returns the difficulty values (16 hexadecimal digits string, 64 bit) for the minimum required on the network
(network_minimum) as well as the current active difficulty seen on the network (network_current,
10 second trended average of adjusted difficulty seen on prioritized transactions, refreshed every 500ms)
which can be used to perform rework for better prioritization of transaction processing.

A multiplier of the network_current from the base difficulty of network_minimum is also provided for comparison.
Network_receive_minimum and network_receive_current are also provided as lower thresholds exclusively for
receive blocks.

	Parameters

	include_trend – Boolean, false by default. Returns the trend of difficulty seen on the network as a list of multipliers.
Sampling occurs every 500ms. The list is ordered such that the first value is the most recent sample.

	
property available_supply

	Returns the amount of NANO that are available in the public supply.

	
property blocks

	Handles the blocks API for the Nano Protocol.
Allows to peek blocks and broadcast new blocks to the network.

A new block can be broadcasted as follows:
block = nano_network.blocks.broadcast(state_block)

	
property node_backend

	Returns the Node object that contains information of the node.

	
property peers

	Returns a list of pairs of online peer IPv6:port and its node protocol network version

	
property representatives

	Returns a list of representatives accounts of the network.

	
property representatives_count

	Retrieves the number of representatives in the network.

	
property representatives_online

	Returns a list of online representatives accounts of the network.
The ones that recently voted.

	
property representatives_online_count

	Retrieves the number of online representatives in the network.

	
property telemetry

	Return metrics from other nodes on the network. By default, returns a summarized view of the whole network.

	
track_confirmation_blocks(accounts_list, callback, *callback_args, **callback_kwargs)

	Tracks all the confirmation blocks in the network and reports them through the callback.
This is a blocking method.

	Parameters

	
	accounts_list – List of accounts to track.

	callback – Callback to report every block. Must return True to keep tracking for new blocks, or False to abort the
process.

	
property wallets

	Handles the wallets API for the Nano protocol.
Allows to create new accounts or manage existing ones.

A new account can be created as follows:
wallet = nano_network.wallets.create()

An existing wallet can be accessed as follows:
wallet = nano_network.wallets[seed]

	
property work_server

	

nanoblocks.node package

Submodules

nanoblocks.node.nanonode module

Module contents

The nanoblocks.node module implements
Nano node wrapper.

	
class nanoblocks.node.NodeFailover(nodes_list, timezone='Etc/UTC')

	Bases: nanoblocks.node.node_remote.NodeRemote

Interface access to a Node.

A Node Failover is node class that forwards its requests to the first healthy node in a list of failover nodes.
The first healthy node found in the list is the one used for performing the requests.

When a node fails in providing a response, the next node in the list is taken instead. It is transparent to the
user, ensuring that an answer is retrieved.

	
add_failover_node(failover_node)

	

	
property failover_nodes

	

	
find_healthy()

	Seeks for a healthy node in the list of nodes.
When a node is found, it is set as the target node of this instance.
:return:

	
property http_url

	

	
remove_failover_node(failover_node)

	

	
property ws

	

	
property ws_url

	

	
class nanoblocks.node.NodeRemote(http_url, ws_url=None, timezone='Etc/UTC')

	Bases: nanoblocks.node.node_interface.NodeInterface

Interface access to a Node.

	
account_history(*args, **kwargs)

	Reports send/receive information for an account.
Returns only send & receive blocks by default (unless raw is set to true - see optional parameters below):
change, state change & state epoch blocks are skipped, open & state open blocks will appear as receive,
state receive/send blocks will appear as receive/send entries.

Response will start with the latest block for the account (the frontier), and will list all blocks back to the
open block of this account when “count” is set to “-1”.

Note: “local_timestamp” returned since version 18.0, “height” field returned since version 19.0.

Source: https://docs.nano.org/commands/rpc-protocol/#account_history

	Parameters

	
	nano_address – Address of the account with format “NANO_…”.

	raw – Boolean, False by default. if set to true, instead of outputting a simplified send or receive explanation
of blocks (intended for wallets), output all parameters of the block itself as seen in block_create or other
APIs returning blocks.

It still includes the “account” and “amount” properties you’d see without this option.
State/universal blocks in the raw history will also have a subtype field indicating their equivalent
“old” block. Unfortunately, the “account” parameter for open blocks is the account of the source block,
not the account of the open block, to preserve similarity with the non-raw history.

	count – Number of blocks to retrieve in a single call to the node. By default, it is 10 blocks.

	head – head (64 hexadecimal digits string, 256 bit). Default is the latest block.
Use this block as the head of the account instead. Useful for pagination.

	offset – offset (decimal integer). Skips a number of blocks starting from head (if given). Not often used.
Available since version 11.0

	reverse – Boolean, False by default. If set to True, the response starts from head (if given, otherwise the first
block of the account), and lists blocks up to the frontier (limited by “count”).

Note: the field previous in the response changes to next. Available since version 19.0

	account_filter – List of public addresses. If set, results will be filtered to only show sends/receives connected to the
provided account(s).

Available since version 19.0. Note: In v19.0, this option does not handle receive blocks; fixed in v20.0.

	
account_info(*args, **kwargs)

	Returns frontier, open block, change representative block, balance, last modified timestamp from local database
& block count for account.

WARNING: Only works for accounts that have received their first transaction and have an entry on the ledger,
will return “Account not found” otherwise.

Source: https://docs.nano.org/commands/rpc-protocol/#account_info

	Parameters

	
	nano_address – Address of the account with format “NANO_…”.

	representative – Boolean, false by default. Additionally, returns representative for account.

	weight – Boolean, false by default. Additionally, returns voting weight for account.

	pending – Boolean, false by default. Additionally, returns receivable balance for account.

	include_confirmed – Boolean, false by default. Adds new return fields with prefix of confirmed_ for consistency:

	confirmed_balance: balance for only blocks on this account that have already been confirmed

	confirmed_height: matches confirmation_height value

	confirmed_frontier: matches confirmation_height_frontier value

	If representative option also true,
	
	confirmed_representative included (representative account from the confirmed frontier block)

	If receivable option also true,
	
	confirmed_receivable included (balance of all receivable amounts where the matching incoming send

blocks have been confirmed on their account)

	
accounts_balances(*args, **kwargs)

	Returns how much RAW is owned and how many have not yet been received by accounts list.

Source: https://docs.nano.org/commands/rpc-protocol/#accounts_balances

	Parameters

	addresses – List of “NANO_…” addresses.

	
accounts_frontiers(*args, **kwargs)

	Returns a list of pairs of account and block hash representing the head block for accounts list.

Source: https://docs.nano.org/commands/rpc-protocol/#accounts_frontiers

	Parameters

	addresses – List of “NANO_…” addresses.

	
accounts_pending(*args, **kwargs)

	Returns a list of confirmed block hashes which have not yet been received by these accounts

source: https://docs.nano.org/commands/rpc-protocol/#accounts_pending

	Parameters

	
	accounts – List of accounts [”nano_…”, “nano_…”] to check for pending blocks.

	threshold – Number (128 bit, decimal), default None. Returns a list of receivable block hashes with amount more or equal
to threshold.

	source – Boolean, False by default. Returns a list of receivable block hashes with amount and source accounts.

	count – Number, 1 by default. Specifies the number of pending blocks to be retrieved.

	include_active – Boolean, false by default. Include active (not confirmed) blocks.

	sorting – Boolean, false by default. Additionally, sorts each account’s blocks by their amounts in descending order.

	include_only_confirmed – Boolean, true by default.
Only returns blocks which have their confirmation height set or are undergoing confirmation height
processing. If false, unconfirmed blocks will also be returned.

	
active_difficulty(*args, **kwargs)

	Returns the difficulty values (16 hexadecimal digits string, 64 bit) and related multiplier from base
difficulty.
[DEPRECATED as of V22]

Source: https://docs.nano.org/commands/rpc-protocol/#active_difficulty

	Parameters

	include_trend – Boolean, false by default. Also returns the trend of difficulty seen on the network as a list of
multipliers.

	
available_supply(*args, **kwargs)

	Returns how many raw are in the public supply.

Source: https://docs.nano.org/commands/rpc-protocol/#available_supply

	
block_confirm(block_hash)

	Request asynchronous confirmation for block from known online representative nodes.
Once the confirmation is requested to the node, a confirmation process starts.

It is required to peek for confirmation results at confirmation history.

Source: https://docs.nano.org/commands/rpc-protocol/#block_confirm

NOTE: Unless there was an error encountered during the command execution, the response will always return
“started”: “1”.

This response does not indicate the block was successfully confirmed, only that an error did not occur.

This response happens even if the block has already been confirmed previously and notifications will be
triggered for this block (via HTTP callbacks or WebSockets) in all cases. This behavior may change in a
future release.

	Parameters

	block_hash – Hash of the block to check.

	
block_count(*args, **kwargs)

	Reports the number of blocks in the ledger and unchecked synchronizing blocks.

Source: https://docs.nano.org/commands/rpc-protocol/#block_count

	Parameters

	include_cemented – Default True. If True, “cemented” in the response will contain the number of cemented blocks.

	
block_info(*args, **kwargs)

	Retrieves a json representation of the block in contents along with:

	since version 18.0: block_account, transaction amount, block balance, block height in account chain, block
local modification timestamp.

	since version 19.0: Whether block was confirmed, subtype (for state blocks) of send, receive, change or
epoch.

Source: https://docs.nano.org/commands/rpc-protocol/#block_info

	Parameters

	
	block_hash – Hash of the block to check.

	json_block – Default False. If True, “contents” will contain a JSON subtree instead of a JSON string.

	
blocks_info(*args, **kwargs)

	Retrieves a json representations of blocks in contents along with:

	
	since version 18.0: block_account, transaction amount, block balance, block height in account chain,
	block local modification timestamp.

	
	since version 19.0: Whether block was confirmed, subtype (for state blocks) of send, receive, change or
	epoch.

	since version 23.0: successor returned.

Using the optional json_block is recommended since v19.0.

Source: https://docs.nano.org/commands/rpc-protocol/#blocks_info

	Parameters

	
	blocks_hashes – List of blocks hashes to retrieve

	json_block – Default False. If True, “contents” will contain a JSON subtree instead of a JSON string.

	include_not_found – Default False. If True, an additional key “blocks_not_found” is provided in the response, containing a list
of the block hashes that were not found in the local database. Previously to this version an error would be
produced if any block was not found.

	
healthy()

	Checks the health status for this node.

	Returns

	True if node can be used, False otherwise.

	
property http_url

	

	
peers(*args, **kwargs)

	Returns a list of pairs of online peer IPv6:port and its node protocol network version.

Source: https://docs.nano.org/commands/rpc-protocol/#peers

	
process(block_definition, subtype=None)

	Publish a block to the network.

https://docs.nano.org/commands/rpc-protocol/#process

	Parameters

	
	block_definition – A JSON block definition of the block to be published.

	subtype – A subtype string defining the type of block.

	
representatives(*args, **kwargs)

	Returns a list of pairs of representative and their voting weight.

Source: https://docs.nano.org/commands/rpc-protocol/#representatives

	Parameters

	
	count – Number. Returns a list of pairs of representative and their voting weight up to count.

	sorting – Boolean, false by default. Additional sorting representatives in descending order.
NOTE: The “count” option is ignored if “sorting” is specified

	
representatives_online(*args, **kwargs)

	Returns a list of online representative accounts that have voted recently.

Source: https://docs.nano.org/commands/rpc-protocol/#representatives_online

	Parameters

	
	weight – Boolean, false by default. Returns voting weight for each representative.

	accounts – Array of accounts. Returned list is filtered for only these accounts.

	
snapshot(accounts_list, blocks_list=None, shallow_history=True, max_pending=100, pending_threshold=None, missing='raise')

	Exports the network information of the given accounts and blocks list up to the current date.
The network information can be used as a snapshot to be loaded in an offline environment, under a NodeVirtual
class object.

	Parameters

	
	accounts_list – List of ‘NANO_…’ accounts to be exported. This includes their internal blocks.

	blocks_list – List of individual blocks to be exported.

	shallow_history – If True, Only the frontier (the latest block) of every account is included in the snapshot. Otherwise, all
blocks are exported.

	max_pending – Maximum number of pending blocks to be stored in the snapshot for each account.

	pending_threshold – Minimum amount threshold of pending blocks (to filter).

	missing – Action to be done in case a missing account/block in the network is detected. The following values are
accepted:

	’raise’ raises a KeyError exception.

	’skip’ ignores the error and skips the account/block.

	Returns

	Snapshot object that can be exported to a file or loaded into a VirtualNode.

	
telemetry(*args, **kwargs)

	Return metrics from other nodes on the network. By default, returns a summarized view of the whole network.

Source: https://docs.nano.org/commands/rpc-protocol/#telemetry

	
property version

	Returns the node information and version.

Source: https://docs.nano.org/commands/rpc-protocol/#version

	
property ws

	

	
property ws_url

	

	
class nanoblocks.node.NodeVirtual(timezone='Etc/UTC', internal_accounts=None, internal_accounts_history=None, internal_accounts_pending=None, internal_blocks=None)

	Bases: nanoblocks.node.node_interface.NodeInterface

Interface access to a Node.

	
account_history(nano_address, raw=False, count=10, previous=None, head=None, reverse=None, offset=None, account_filter=None)

	Reports send/receive information for an account.
Returns only send & receive blocks by default (unless raw is set to true - see optional parameters below):
change, state change & state epoch blocks are skipped, open & state open blocks will appear as receive,
state receive/send blocks will appear as receive/send entries.

Response will start with the latest block for the account (the frontier), and will list all blocks back to the
open block of this account when “count” is set to “-1”.

Note: “local_timestamp” returned since version 18.0, “height” field returned since version 19.0.

Source: https://docs.nano.org/commands/rpc-protocol/#account_history

	Parameters

	
	nano_address – Address of the account with format “NANO_…”.

	raw – Boolean, False by default. if set to true, instead of outputting a simplified send or receive explanation
of blocks (intended for wallets), output all parameters of the block itself as seen in block_create or other
APIs returning blocks.

It still includes the “account” and “amount” properties you’d see without this option.
State/universal blocks in the raw history will also have a subtype field indicating their equivalent
“old” block. Unfortunately, the “account” parameter for open blocks is the account of the source block,
not the account of the open block, to preserve similarity with the non-raw history.

	count – Number of blocks to retrieve in a single call to the node. By default, it is 10 blocks.

	head – head (64 hexadecimal digits string, 256 bit). Default is the latest block.
Use this block as the head of the account instead. Useful for pagination.

	offset – offset (decimal integer). Skips a number of blocks starting from head (if given). Not often used.
Available since version 11.0

	reverse – Boolean, False by default. If set to True, the response starts from head (if given, otherwise the first
block of the account), and lists blocks up to the frontier (limited by “count”).

Note: the field previous in the response changes to next. Available since version 19.0

	account_filter – List of public addresses. If set, results will be filtered to only show sends/receives connected to the
provided account(s).

Available since version 19.0. Note: In v19.0, this option does not handle receive blocks; fixed in v20.0.

	
account_info(nano_address, representative=False, weight=False, pending=True, include_confirmed=False)

	Returns frontier, open block, change representative block, balance, last modified timestamp from local database
& block count for account.

WARNING: Only works for accounts that have received their first transaction and have an entry on the ledger,
will return “Account not found” otherwise.

Source: https://docs.nano.org/commands/rpc-protocol/#account_info

	Parameters

	
	nano_address – Address of the account with format “NANO_…”.

	representative – Boolean, false by default. Additionally, returns representative for account.

	weight – Boolean, false by default. Additionally, returns voting weight for account.

	pending – Boolean, false by default. Additionally, returns receivable balance for account.

	include_confirmed – Boolean, false by default. Adds new return fields with prefix of confirmed_ for consistency:

	confirmed_balance: balance for only blocks on this account that have already been confirmed

	confirmed_height: matches confirmation_height value

	confirmed_frontier: matches confirmation_height_frontier value

	If representative option also true,
	
	confirmed_representative included (representative account from the confirmed frontier block)

	If receivable option also true,
	
	confirmed_receivable included (balance of all receivable amounts where the matching incoming send

blocks have been confirmed on their account)

	
accounts_balances(addresses)

	Returns how much RAW is owned and how many have not yet been received by accounts list.

Source: https://docs.nano.org/commands/rpc-protocol/#accounts_balances

	Parameters

	addresses – List of “NANO_…” addresses.

	
accounts_frontiers(addresses)

	Returns a list of pairs of account and block hash representing the head block for accounts list.

Source: https://docs.nano.org/commands/rpc-protocol/#accounts_frontiers

	Parameters

	addresses – List of “NANO_…” addresses.

	
accounts_pending(accounts, threshold=None, source=False, count=1, include_active=False, sorting=True, include_only_confirmed=True)

	Returns a list of confirmed block hashes which have not yet been received by these accounts

source: https://docs.nano.org/commands/rpc-protocol/#accounts_pending

	Parameters

	
	accounts – List of accounts [”nano_…”, “nano_…”] to check for pending blocks.

	threshold – Number (128 bit, decimal), default None. Returns a list of receivable block hashes with amount more or equal
to threshold.

	source – Boolean, False by default. Returns a list of receivable block hashes with amount and source accounts.

	count – Number, 1 by default. Specifies the number of pending blocks to be retrieved.

	include_active – Boolean, false by default. Include active (not confirmed) blocks.

	sorting – Boolean, false by default. Additionally, sorts each account’s blocks by their amounts in descending order.

	include_only_confirmed – Boolean, true by default.
Only returns blocks which have their confirmation height set or are undergoing confirmation height
processing. If false, unconfirmed blocks will also be returned.

	
active_difficulty(include_trend=False)

	Returns the difficulty values (16 hexadecimal digits string, 64 bit) and related multiplier from base
difficulty.
[DEPRECATED as of V22]

Source: https://docs.nano.org/commands/rpc-protocol/#active_difficulty

	Parameters

	include_trend – Boolean, false by default. Also returns the trend of difficulty seen on the network as a list of
multipliers.

	
available_supply()

	Returns how many raw are in the public supply.

Source: https://docs.nano.org/commands/rpc-protocol/#available_supply

	
block_confirm(block_hash)

	Request asynchronous confirmation for block from known online representative nodes.
Once the confirmation is requested to the node, a confirmation process starts.

It is required to peek for confirmation results at confirmation history.

Source: https://docs.nano.org/commands/rpc-protocol/#block_confirm

NOTE: Unless there was an error encountered during the command execution, the response will always return
“started”: “1”.

This response does not indicate the block was successfully confirmed, only that an error did not occur.

This response happens even if the block has already been confirmed previously and notifications will be
triggered for this block (via HTTP callbacks or WebSockets) in all cases. This behavior may change in a
future release.

	Parameters

	block_hash – Hash of the block to check.

	
block_count(include_cemented=True)

	Reports the number of blocks in the ledger and unchecked synchronizing blocks.

Source: https://docs.nano.org/commands/rpc-protocol/#block_count

	Parameters

	include_cemented – Default True. If True, “cemented” in the response will contain the number of cemented blocks.

	
block_info(block_hash, json_block=True)

	Retrieves a json representation of the block in contents along with:

	since version 18.0: block_account, transaction amount, block balance, block height in account chain, block
local modification timestamp.

	since version 19.0: Whether block was confirmed, subtype (for state blocks) of send, receive, change or
epoch.

Source: https://docs.nano.org/commands/rpc-protocol/#block_info

	Parameters

	
	block_hash – Hash of the block to check.

	json_block – Default False. If True, “contents” will contain a JSON subtree instead of a JSON string.

	
blocks_info(blocks_hashes, json_block=True, include_not_found=False)

	Retrieves a json representations of blocks in contents along with:

	
	since version 18.0: block_account, transaction amount, block balance, block height in account chain,
	block local modification timestamp.

	
	since version 19.0: Whether block was confirmed, subtype (for state blocks) of send, receive, change or
	epoch.

	since version 23.0: successor returned.

Using the optional json_block is recommended since v19.0.

Source: https://docs.nano.org/commands/rpc-protocol/#blocks_info

	Parameters

	
	blocks_hashes – List of blocks hashes to retrieve

	json_block – Default False. If True, “contents” will contain a JSON subtree instead of a JSON string.

	include_not_found – Default False. If True, an additional key “blocks_not_found” is provided in the response, containing a list
of the block hashes that were not found in the local database. Previously to this version an error would be
produced if any block was not found.

	
healthy()

	Checks the health status for this node.

	Returns

	True if node can be used, False otherwise.

	
property http_url

	

	
load_snapshot(snapshot)

	Loads a node snapshot into this virtual instance.
A snapshot contains all the required information to make offline operations on certain accounts.

Incremental updates are supported by default, meaning that the internal state of this virtual node can be
updated with sequential loads of snapshots.

	Parameters

	snapshot – snapshot of accounts, blocks and transactions history from a real node.

	
peers()

	Returns a list of pairs of online peer IPv6:port and its node protocol network version.

Source: https://docs.nano.org/commands/rpc-protocol/#peers

	
process(block_definition, subtype=None)

	Virtual process – No signatures are checked, no correctness is checked.

Operates the accounts referenced by the block_definition without ensuring its correctness.

	
representatives(count=10, sorting=False)

	Returns a list of pairs of representative and their voting weight.

Source: https://docs.nano.org/commands/rpc-protocol/#representatives

	Parameters

	
	count – Number. Returns a list of pairs of representative and their voting weight up to count.

	sorting – Boolean, false by default. Additional sorting representatives in descending order.
NOTE: The “count” option is ignored if “sorting” is specified

	
representatives_online(weight=True, accounts=None)

	Returns a list of online representative accounts that have voted recently.

Source: https://docs.nano.org/commands/rpc-protocol/#representatives_online

	Parameters

	
	weight – Boolean, false by default. Returns voting weight for each representative.

	accounts – Array of accounts. Returned list is filtered for only these accounts.

	
telemetry()

	Return metrics from other nodes on the network. By default, returns a summarized view of the whole network.

Source: https://docs.nano.org/commands/rpc-protocol/#telemetry

	
property version

	Returns the node information and version.

Source: https://docs.nano.org/commands/rpc-protocol/#version

	
property ws

	

	
property ws_url

	

nanoblocks.protocol.crypto.ed25519 package

Submodules

nanoblocks.protocol.crypto.ed25519.ed25519 module

Module contents

Modified version of ed22519 that uses pyblake2 hashes instead of sha512
Original at https://github.com/pyca/ed25519/blob/master/ed25519.py
ed25519.py - Optimized version of the reference implementation of Ed25519
Written in 2011? by Daniel J. Bernstein <djb@cr.yp.to>

2013 by Donald Stufft <donald@stufft.io>
2013 by Alex Gaynor <alex.gaynor@gmail.com>
2013 by Greg Price <price@mit.edu>

To the extent possible under law, the author(s) have dedicated all copyright
and related and neighboring rights to this software to the public domain
worldwide. This software is distributed without any warranty.
You should have received a copy of the CC0 Public Domain Dedication along
with this software. If not, see
<http://creativecommons.org/publicdomain/zero/1.0/>.
NB: This code is not safe for use with secret keys or secret data.
The only safe use of this code is for verifying signatures on public messages.
Functions for computing the public key of a secret key and for signing
a message are included, namely publickey_unsafe and signature_unsafe,
for testing purposes only.
The root of the problem is that Python’s long-integer arithmetic is
not designed for use in cryptography. Specifically, it may take more
or less time to execute an operation depending on the values of the
inputs, and its memory access patterns may also depend on the inputs.
This opens it to timing and cache side-channel attacks which can
disclose data to an attacker. We rely on Python’s long-integer
arithmetic, so we cannot handle secrets without risking their disclosure.

	
nanoblocks.protocol.crypto.ed25519.H(m)

	

	
nanoblocks.protocol.crypto.ed25519.Hint(m, hasher=<function H>)

	

	
exception nanoblocks.protocol.crypto.ed25519.SignatureMismatch

	Bases: Exception

	
nanoblocks.protocol.crypto.ed25519.bit(h, i)

	

	
nanoblocks.protocol.crypto.ed25519.checkvalid(s, m, pk)

	Not safe to use when any argument is secret.
See module docstring. This function should be used only for
verifying public signatures of public messages.

	
nanoblocks.protocol.crypto.ed25519.decodeint(s)

	

	
nanoblocks.protocol.crypto.ed25519.decodepoint(s)

	

	
nanoblocks.protocol.crypto.ed25519.edwards_add(P, Q)

	

	
nanoblocks.protocol.crypto.ed25519.edwards_double(P)

	

	
nanoblocks.protocol.crypto.ed25519.encodeint(y)

	

	
nanoblocks.protocol.crypto.ed25519.encodepoint(P)

	

	
nanoblocks.protocol.crypto.ed25519.inv(z)

	$= z^{-1} mod q$, for z != 0

	
nanoblocks.protocol.crypto.ed25519.isoncurve(P)

	

	
nanoblocks.protocol.crypto.ed25519.make_Bpow()

	

	
nanoblocks.protocol.crypto.ed25519.pow2(x, p)

	== pow(x, 2**p, q)

	
nanoblocks.protocol.crypto.ed25519.publickey_unsafe(sk, hash_func=<function H>)

	Not safe to use with secret keys or secret data.
See module docstring. This function should be used for testing only.

	
nanoblocks.protocol.crypto.ed25519.scalarmult(P, e)

	

	
nanoblocks.protocol.crypto.ed25519.scalarmult_B(e)

	Implements scalarmult(B, e) more efficiently.

	
nanoblocks.protocol.crypto.ed25519.signature_unsafe(m, sk, pk, hash_func=<function H>)

	Not safe to use with secret keys or secret data.
See module docstring. This function should be used for testing only.

	
nanoblocks.protocol.crypto.ed25519.xrecover(y)

	

nanoblocks.protocol.crypto package

Subpackages

Submodules

nanoblocks.protocol.crypto.crypto_functions module

Module contents

nanoblocks.protocol.messages package

Submodules

nanoblocks.protocol.messages.account_messages module

nanoblocks.protocol.messages.network_messages module

nanoblocks.protocol.messages.node_messages module

nanoblocks.protocol.messages.work_server_messages module

Module contents

nanoblocks.protocol package

Subpackages

Module contents

nanoblocks.wallet package

Submodules

nanoblocks.wallet.wallet module

	
class nanoblocks.wallet.wallet.Wallet(nano_network, seed=None)

	Bases: nanoblocks.base.nanoblocks_class.NanoblocksClass

Represents a Wallet in the Nano ecosystem.

This is class does not use any backend for creating or managing account keys.

Keep in mind that this class holds private keys, thus should be secured.

	
property accounts

	Retrieves access to the accounts from this wallet.

	
classmethod from_mnemonic(words_list, nano_network)

	Instantiates this class based on a bip39 mnemonic list of keywords.

This method tolerates missing words in the list (set to None). In case it detects missing words, the method
will attempt to refill them with a random word.

	Parameters

	
	words_list – List of 24 words to use for importing the seed.

	nano_network – A network object giving access to node and work backends.

	
property mnemonic

	Derives the bip39 mnemonic for the seed of this wallet.

	
property seed

	Retrieves the seed of this wallet

Module contents

The wallet subpackage gives access to wallet classes.

	
class nanoblocks.wallet.Wallets(nano_network)

	Bases: nanoblocks.base.nanoblocks_class.NanoblocksClass

Represents a set of wallets in the Nano ecosystem.

It allows to create or use existing wallets by their seed or mnemonic.

	
create()

	Creates a new wallet with a randomized seed.

nanoblocks.work.backend package

Submodules

nanoblocks.work.backend.nano_work_server module

Module contents

nanoblocks.work package

Subpackages

Submodules

nanoblocks.work.work_server module

	
class nanoblocks.work.work_server.WorkServer

	Bases: object

Represents a work server.
Allows to generate work for a given account by using an external work server.

	
generate_work_change(account: nanoblocks.account.account.Account, work_difficulty=None, multiplier=1.0)

	

	
generate_work_receive(account: nanoblocks.account.account.Account, work_difficulty=None, multiplier=1.0)

	

	
generate_work_send(account: nanoblocks.account.account.Account, work_difficulty=None, multiplier=1.0)

	

Module contents

	
class nanoblocks.work.NanoLocalWorkServer

	Bases: nanoblocks.work.work_server.WorkServer

Local work generation.
No remote server required, but slower.

	
generate_work_change(account: nanoblocks.account.account.Account, work_difficulty=18446744039349813248, multiplier=1.0)

	

	
generate_work_receive(account: nanoblocks.account.account.Account, work_difficulty=18446741874686296064, multiplier=1.0)

	

	
generate_work_send(account: nanoblocks.account.account.Account, work_difficulty=18446744039349813248, multiplier=1.0)

	

	
class nanoblocks.work.NanoRemoteWorkServer(work_server_http_url)

	Bases: nanoblocks.work.work_server.WorkServer

https://github.com/nanocurrency/nano-work-server

	
generate_work_change(account: nanoblocks.account.account.Account, work_difficulty=18446744039349813248, multiplier=1.0)

	

	
generate_work_receive(account: nanoblocks.account.account.Account, work_difficulty=18446741874686296064, multiplier=1.0)

	

	
generate_work_send(account: nanoblocks.account.account.Account, work_difficulty=18446744039349813248, multiplier=1.0)

	

nanoblocks package

Subpackages

What is nanoblocks

nanoblocks is an unofficial Python package built to ease the access to NANO cryptocurrency [https://nano.org/]. It is intended to give an easy interface for programmers to play with the Nano Network, allowing most Nano common operations which includes creating new wallets and accounts, checking accounts information, making transactions and more.

In the following sections, you will learn how nanoblocks is built and what are the basic concepts required to deal with the package.

Basic concepts

nanoblocks is a composition of a few main concepts as shown in the following schema:

[image: tutorial/images/nanoblocks_schema.png]
This schema is implemented as-is in nanoblocks, meaning that there exist the corresponding classes NanoNode, NanoNetwork, Blocks, Account and Wallet.
These 5 classes are interrelated to each other as shown by the arrows present in the schema image, which makes it extremely easy to flow.

	NanoNode Is a class that contains the addresses of the RPC HTTP, WebSocket and RemoteWorkServer (if available). It also wraps simple communication mechanism for each. All the objects in the package usually have access to this object.

	NanoNetwork Is a class that gives a simple interface to the Nano network. It provides access to accounts, blocks and wallets. Also, it is responsible of broadcasting blocks to the network.

	Account Is a class that interfaces one account. It gives access to the account information (balance, representative, frontier, …) and more complex information like the blockchain history and pending transactions. Furthermore, allows to build transaction blocks, which can be later broadcasted to the network.

	Blocks Is a set of classes that interfaces the basic blocks operations in Nano. In this package, the blocks are specialized into 3 classes: BlockSend, BlockReceive and BlockState. If you still don’t know what a block in Nano is, you should first read the official documentation of Nano [https://docs.nano.org/integration-guides/the-basics/] to get full overview.

	Wallet Is a class that allows handling a wallet. It can access existing wallets through the seed or the BIP39 mnemonic word list, or generate new cryptographic secure wallets. This class can even work offline, without a node attached to the network, meaning that you can access or create wallets without internet.

nanoblocks transactions

Likely to all the functionality from the package, handling transactions in nanoblocks is also simplified to the
minimum expression, but it requires a deeper knowledge of the network to understand how and why it is structured as is.
In the following sections we will try to explain what is behind blocks, work, transactions, how are they related to
each other and how can be handled in nanoblocks.

What is a block?

In Nano, like most cryptocurrencies, everything is built on top of Blocks. A Block is a set of bytes that explains a
change in an account, like a modification of the balance or a change of its representative. If you want a deep
introduction to blocks, the best resource for this is the official documentation from Nano [https://docs.nano.org/protocol-design/blocks/].

Every account in Nano is linked to the last block (last modification) that was published for it, a.k.a frontier block.
Every block is also linked to the previous block - chained up to the first block of the account. This is essentially a
block-chain, and every account contains a single block-chain of operations. You can access the frontier block of an
account as follows:

>>> from nanoblocks.node import NanoNode
>>> from nanoblocks.network import NanoNetwork

>>> node = NanoNode("http://node_host:7076")
>>> network = NanoNetwork(node)

>>> account = network.accounts["nano_39a73oy5ungrhxy5z5oao1xso4zo7dmgpjd4u74xcrx3r1w6rtazuouw6qfi"]
>>> print(account.frontier)
[Block #733 from account nano_39a73oy5ungrhxy5z5oao1xso4zo7dmgpjd4u74xcrx3r1w6rtazuouw6qfi]
 Type: send
 Hash: FED268136D2931EDEA61057D91C3C250894EF95C14C0D16CA0D126D99579C53C
 Destination account: nano_3qma6u8sgsbbfson9owacobnj93b64qrw8astsq8ugprco1z8gqztoncjbh8
 Amount: 0.085261000000000000026440892414
 Local date: 2020-12-02 01:30:39+01:00

Since there are as many block-chains as accounts, it makes operations in Nano asynchronous due to not having a single
global block-chain.

What is “Work” and what is it for?

Work in Nano is a small proof of computation that validates a transaction. This means that every block published into
the network must have a valid work attached in order to be valid.

It was born as an anti-spam mechanism, as it is computationally expensive to be built (it requires several seconds in a modern computer,
hundreds of milliseconds in the most powerful GPU up to date of this writing). Moreover, the work difficulty is variable
and depends on the status of the network, meaning that it might increase or decrease (several times) from time to time.
It is used as a prioritization metric for new transactions, as the difficulty of work can be manually adjusted when
generated.

The result of a work computation is a hash value which is appended to the block itself in order to make it valid.

One of the most exciting features of work in Nano is that it can be precached. This is due to the block hash being
constructed only in function of the hash of the frontier of an account. This means that you can precompute work for
the next block of your account, no matter what kind of block (send/receive/representative change), as far as you know the
frontier block hash of your account. Moreover, since you can build the new block, compute its work and generate the
new block hash, you can use this created hash as the hypothetical new frontier of your account even before broadcasting it.
This allows you to create and chain many blocks offline, and then publish them all almost together.

Precaching work gives the illusion that Nano can be almost instant. And most of the times, it will be.

nanoblocks does not bundle the needed tools to generate work for a transaction, but this process can be relied to a nano node or a
nano work server as follows:

>>> from nanoblocks.node import NanoNode
>>> from nanoblocks.work.backend import NanoWorkServer
>>> from nanoblocks.network import NanoNetwork

>>> nano_work_server = NanoWorkServer("http://work_server_host:7076") # GPU host would be advisable to speed up computations
>>> node = NanoNode("http://node_host:7076")
>>> network = NanoNetwork(node, work_server=nano_work_server)

There’s a tool called nano-work-server [https://github.com/nanocurrency/nano-work-server]. You may want to
install it in case you want to play with transactions using nanoblocks.

Sending and receiving transactions

PS: Ensure you have a work server attached to the `network` object in order to continue.

Once you have a network object running, you can start sending or receiving blocks for any account as far as you own
the private key required to sign these transactions.

The process consist of two parts:

	A block is built with the account transaction, worked and signed.

	The block is broadcasted to the network.

The following example illustrates how to build a send block between two accounts:

>>> account1 = network.accounts['nano_account1']
>>> account2 = network.accounts['nano_account2']

>>> account1.unlock("PRIVATEKEY_ACCOUNT1")

account1 sends a transaction to account2
>>> send_block = account1.build_send_block(account_target=account2, nano_amount="0.00001")

>>> network.blocks.broadcast(send_block) # Sent to the network!

And now to receive it:

>>> account2.unlock("PRIVATEKEY_ACCOUNT2")

account2 receives the transaction from account1
>>> receive_block = account2.build_receive_block(pending_block=send_block)
>>> network.blocks.broadcast(receive_block)

This example shows the nature of the block-lattice: every account is the solely responsible for modifying its block-chain.
That is the reason that the sender account can build a send block, but it is also required that the receiver account builds the
corresponding receive block in the other end in order to receive the funds.

What happens if a block is sent but not received? When a block is sent, the sender is writing into his blockchain
a send transaction that will be stored forever in the block-lattice. This means that it is not reversible. Since the
very moment the sender sent this block, he updated his account balance (reducing it) thus he can’t spend it anymore.
These transactions are called pending transactions and can stay forever in the network in this state.

The receiver can’t spend this balance neither until he updates his own balance (increasing it) by the amount of the
corresponding send block. He is allowed to update his balance with a corresponding send block from other account
block-chain at any time. So no funds are ever lost, even if the pending transactions are not received. They can be
received in the future.

 _images/logo_big.png
« =2 NanoBlocks

nav.xhtml

 Table of Contents

 		
 nanoblocks

 		
 What is Nano?

 		
 How does Nano work?

 		
 How to interact with the network?

 		
 Can I host a node?

 		
 Getting started

 		
 Set-up a Node

 		
 Interacting with the network

 		
 Accessing an account

 		
 Accessing a block

 		
 Accessing a wallet

 		
 Creating new wallets

 		
 Creating wallet accounts

 		
 Requesting payments

 		
 Sending and receiving Nano

_static/file.png

_images/qr_code_donate.jpg

_static/minus.png

_static/plus.png

